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Analytic description of competitive grain growth
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We describe an analytic model for polycrystalline thin film growth based on competition between grains
with conic geometries. This model is valid for all film thicknesses and is verified using level set simulations in
2+1 dimensions. We study the effects of nonuniform initial grain distributions on growth statistics. These
results provide a possible explanation for discrepancies between experimentally measured and theoretical

scaling laws.
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I. INTRODUCTION

Polycrystalline thin films are important for a wide array of
applications including optics, semiconductors, nanomechani-
cal devices and sensors. In addition to variations in bulk
material properties, the behavior of polcrystalline materials
is strongly influenced by grain morphology [1] and texture
[2]. For example, grain structure can influence thin film
stresses and etching [3,4], sensitivity and response time of
sensors [5], thermal conductivity and surface roughness [6],
and semiconductor electrical properties [7,8]. For these rea-
sons it is critical to understand the fundamental processes
that govern grain evolution during thin film growth.

Polycrystalline films typically begin as a series of uncon-
nected grains distributed randomly over the substrate sur-
face. The grains expand until they form a continuous film at
which point competitive grain growth begins, as originally
envisioned by Kolmogorov [9] and van der Drift [10]. Each
grain asymptotically evolves toward a kinetic Wulff shape
and those grains having more favorable orientations will
eventually dominate the surface. If the Schwoebel barrier(s)
of one or more low-index crystalline faces is very low, the
grain will be extremely faceted and its kinetic Wulff shape
will be a simple polyhedron. In the simplest form of faceted
polycrystalline thin film growth, the growth velocity of a
given facet depends only on its crystallographic orientation.

This type of evolution has been simulated in several re-
cent studies [ 11-14]. Tt is also now possible to carefully ana-
lyze various aspects of polycrystalline growth both after
deposition [15,16] and in situ [17]. However, few analytic
models are available to analyze faceted polycrystalline
growth. The most widely used model was proposed by Thijs-
sen et al. in 1992 [18], but this model is only applicable
during late-stage growth.

In this study, we derive an analytic model that describes
the evolution of a polycrystalline thin film. Like Thijssen, we
assume grains can be described geometrically by cones, a
comparison elucidated in [14], and construct a model based
on the evolution of the angular distribution of cones. How-
ever, unlike Thijssen’s model, our method is applicable for
all times and can be used to describe a larger variety of initial
angular distributions.
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II. ANALYTIC GROWTH MODEL
A. Initial angular distributions

A conic grain is described with four parameters: the origin
in the substrate plane given by coordinates (xy,y,) and the
primary vector of the cone given by the tilt angle from the
substrate normal # and the angle in the substrate plane ¢. We
make the mean-field-type assumption to ignore the local co-
ordinates of all grains as well as assuming that the distribu-
tion of angles ¢ is uniform at all times. Therefore, we need
only consider the evolution of the angular density distribu-
tion p(6). Three examples of an angular distribution are
shown in Fig. 1.

In a real crystal system, the fastest growth direction refers
to the most favorable crystallographic orientation(s) of a
grain. For conic grains, the fastest growth direction is the
vector from the cone origin to its apex. In this study, we
arbitrarily set the fastest growth directions to the eight (111)
directions; these directions are often observed experimen-
tally in fiber texture films. The simplest initial angular distri-
bution of grains would be a uniform distribution. However,
grains will often preferentially nucleate closer to a particular
orientation. If this orientation is the same as the fastest
growth direction, we refer to the angular distribution as be-
ing biased toward the fastest growth direction. If however
the two orientations are different, we call the angular distri-
bution biased away from the fastest growth direction. These
three cases are shown as spherical pole figures in Fig. 1; the
leftmost case is a primarily (111)-oriented initial texture (bi-
ased toward), the center case is a uniform initial texture and
lastly the rightmost case is a primarily (001)-oriented texture
(biased away). A (111) direction is shown for reference on
each of the plots. In all three cases, the angular grain density
as a function of 6 (the angle from the nearest fastest growth
direction) is calculated by radially integrating around one of
the (111) directions, the results of which are also graphed in
Fig. 1. The mathematical details of our construction of initial
angular distributions is left to Appendix.

B. Model derivation

The analytic model derived here describes the evolution
of the angular distribution of grains as the film surface ad-
vances. Suppose we have an ensemble of cones with apex
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FIG. 1. (Color online) Initial grain orientations distributions
from left to right: biased toward fastest growth direction, uniform,
and biased away from fastest growth direction. Fastest growth di-
rection and rings showing the direction of integration are plotted on
each spherical pole figure.

angle « and angular density distribution p(6,7). All conic
grains will grow at the same velocity, and for convenience,
we set the distance from each cone origin to its apex to the
growth time #. The advancing surface is composed of grains
competing for height, with more favorably oriented grains
subsuming those less favorably oriented. To describe the
evolution of the surface with time, we must calculate the
rate, at which all cones are deleted by their neighbors.

First consider two cones having tilt angles 6’ <<#. For
convenience we will label the taller cone as cone 6" and the
shorter cone as cone 6. Figure 2 shows a deletion event (a
cone apex being subsumed by another cone) occurring be-
tween time ¢ and 7+ At. A deletion plane is defined parallel to
the substrate at the height of the shorter cone’s apex. This is
the plane, in which the shorter cone’s apex collides with the
surface of the taller cone.

Geometric considerations dictate that a cone can only ever
be deleted by a cone with a more favorable orientation. In
order to calculate the probability of this event occurring, we
analyze the geometry of the conic section formed by the
intersection between the deletion plane and the taller cone.

Substrate Plane

FIG. 2. (Color online) A deletion event between two conic
grains at time ¢ in the time interval At. Isocontours are shown at
different heights. Note that the primary axis of both cones are the
same length.
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FIG. 3. (Color online) Geometry of a cross-section of the cone
with tilt angle @’ in the deletion plane shown in Fig. 2.

Figure 3 shows the geometry of the conic section in the
deletion plane. Two different boundaries are shown, the
boundary of cone ' at time ¢ before the deletion event and at
time 7+ Ar after the deletion event. The area between these
two boundaries defines the deletion area A ;,;. The probability
of cone @' deleting cone 6 in any given time interval At is
simply the area A,,; divided by the total possible area where
the apex of cone 6 can be found in.

To calculate A,,;, we start with the height difference be-
tween the two cone apices, (cos 6’ —cos #)t. The major and
minor semiaxes a and b, and the distance d from the ellipse
center to the apex of cone &' are all proportional to this
height difference and are given by

tan
a= 1_:z(cos 0’ —cos O)t, (1)

tan o

b= m(cos 0’ —cos 0O)t, (2)

tan® « tan &’

d= 1-é

where e=sin 6'/cos « is the eccentricity of the ellipse. Over
one time step Af, the boundary of cone 6" will expand and
the apex of cone 6 will travel relative to it. The distance AL’
traveled by the elliptic boundary and the distance AL trav-
eled by the apex of cone 6 in the time interval Az are given
by

(cos 8" —cos 0)t, (3)

tan o

1-¢€

AL’ = At (cos 0" —cos O)[cos ¢',sin ¢'], (4)

AL = At sin(6)[cos ¢,sin ¢], (5)

where the direction of these vectors are given by the angles
¢’ and ¢, respectively. If the boundary is parametrized by
x=b cos ¢ and y=d+a sin y where —7 << /<< then the arc
length segment dS and AL’ can be written as

dS =dy{b sin ' ,—a cos '], (6)
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At
AL’ = T(COS 0" —cos O)[b cos p,d+asiny]. (7)

As shown in Fig. 3 the differential deletion zone is a paral-
lelogram having an area dA,,; given by

dA ., = [sin 6(a cos i cos ¢+ b sin i sin )

+

~ |

(a+d sin gb)}Atdz,b. (8)

Because ¢ varies from —r to 7 we can introduce an arbitrary
phase shift and rewrite Eq. (8) as

. [ .
dA g, = [sm 6 cos ¢p\a’ cos® Y+ b? sin®

+ l;)(a +d sin w)]Atdlp. 9)

To find the total deletion area A,,; we must integrate over ¢
and average over all ¢, where dA;,;>0 giving

2At ™2 feos™ w
Ay = — sin 6 cos p\a® cos® Y+ b? sin® ¢
0

—7/2

+lf(a+dsin zﬁ)]dqﬁdw, (10)

where

b(a +d sin )

w=-— ) (11)
t sin O\a? cos? W+ b?sin®
Integrating in ¢ we obtain the expression
2At /2
Ay = —J [sin o1 — wi\a? cos? Y+ b?sin®
T J_m2
YN :
+cos (w);(a +d sin i) |di. (12)

This equation is numerically evaluated for all values of 8 and
6" of interest for a given value of a. To evolve the angular
density distribution p(6,) over all time, we weight the area
of deletion by the angular density distribution to calculate the
probability of deletion for each value of  in the time interval
At. The new density distribution after this time interval can
be calculated by multiplying the old distribution by the sur-
vival probability, equal to one minus the probability of dele-
tion, i.e.,

0 +At 0
%: ! _f Adel(a’ar,a’)p(e’)hdgr‘ (13)
! 0

Note that the upper bound of the integral is 6, reflecting the
physical rule that a cone can only be deleted by a cone with
a more favorable orientation (one with a lower 8 value). To
calculate the evolution of an angular distribution function,
Eq. (12) is solved first for all § and 6" values of interest and
then that data is used evolve the distribution using Eq. (13).

PHYSICAL REVIEW E 81, 011601 (2010)

FIG. 4. (Color online) Examples of competitive conic grain
growth from level set simulations at various thicknesses. Surfaces
are shaded by x-direction slope and cross-sectional slices also
shown. Potential deletion zones marked in red. Animated version
available online in supplementary materials (Ref. [20]).

III. MODEL VALIDATION

A. 2+1D simulation of conic grains

To test the analytic model given by Egs. (1)—(3) and (11)-
(13), we have used level set simulations of competitive conic
grain growth. The conic surface of each grain is described by
a four-dimensional implicit function. At each time step all
surfaces are advanced and a 2+ 1-dimensional surface z(x,y)
is calculated from the union of all cones. When a cone apex
is subsumed into the surface, the cone ceases to grow. An
example simulation is shown in Fig. 4 of cones with «
=30° and a uniform distribution of tilt angles up to a cutoff
of 6,=45°. More details on the simulation methodology are
given in [11,14].

The mean heights of the simulation surfaces shown in Fig.
4 are given in units of initial grain spacing d,,, defined as the
square root of mean initial grain area A, for convenience.
Survival probability P is measured by dividing the number
of surviving grains by the number of initial grains. Figure 4
clearly shows that P decreases monotonically with film
thickness /. Note that mean thickness is asymptoting toward
time (defined as the length of the primary vector of each
cone), which_approximately follows the relationship h=t
—1/2 tan a\P.

B. Comparison of model to simulation

A comparison of grain orientation distributions between
level set simulations of 10° cones and the analytic model,
with both having a@=30°, is shown in Fig. 5 for the three
cases described in Fig. 1. The agreement is excellent over all
times, validating the analytic model.

It is important to point out that no mean-field assumptions
were used in the level set simulations. Because the simula-
tion and the model agree, our decision to neglect local grain
correlations in the analytic model is validated. Even if local
angular or positional correlations of grains do occur, they do
not affect the global evolution of the surface in any mean-
ingful way.

IV. ANALYSIS OF GRAIN GROWTH MODEL

A. Self-similarity of distributions

The angular distributions shown in Fig. 5 display remark-
able self-similarity between different thicknesses. Thijssen et
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FIG. 5. (Color online) Comparison of the grain distribution at
four different film thicknesses between analytic growth model and
level set simulation for the cases where the initial distribution is (a)
biased toward the fastest growth direction, (b) uniform, and (c)
biased away from the fastest growth direction.

al. suggested that log(p(6,1)/0)=t*¢ in late-stage film
growth [18]. We derive an exact expression for the
asymptotic angular distribution as follows. Each of the angu-
lar distributions seen in Fig. 5 asymptotes toward a constant
slope,

n=—__ . (14)

This slope is proportional to the number of grains initially
oriented in the fastest growth direction. Note that this value
must be estimated or measured experimentally for a given
initial angular distribution. The asymptotic form of the angu-
lar distribution is given by

2
p(0,t)=7]06xp[—k<§_> 6’5], (15)

where k is a scaling constant and 7 is the cross-over thick-
ness into late-stage, or self-similar behavior. To solve for «,
we note that the grain probability of survival is unity at ¢
=7. Integrating Eq. (15) from O to «© when t=7 gives k
:[77F(%)/5]5/2, where T is the gamma function. The angular
distribution at late times is therefore

2 5/2
uBIe
55 <£> at (16)

T

p(6.1) = nbexp| -

which agrees with distributions generated by both numerical
iteration of Eq. (13) and level set simulations.
B. Scaling laws

The goal of our analytic growth model is to predict mor-
phological statistics for this type of polycrystalline film
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growth. Most statistical measures in thin film growth follow
power laws with thickness (or equivalently time, for constant
deposition rate). Survival probability P is calculated by inte-
grating the angular density distribution

/2
P(t) = f p(6,1)do. (17)
0

Inserting Eq. (16) into Eq. (17) gives
P= (/7). (18)

Other growth statistics such as expectation value of grain
area (A) and the root-mean-square (rms) surface roughness o
have simple relationships to the grain survival probability,
the derivations of which are given in the appendix of [14].
From our model we have calculated scaling laws for (A) and
o at late-stage growth of

(A= (W™, (19)

1 1 1
o= \/———(t/n*". (20)
tana V7 4

Our calculated exponents match those predicted by Thijssen
for late-stage growth [18]. However, our model can also pre-
dict the value of crossover thickness 7, based only on the
cone angle « and the asymptotic value of the slope of the
distribution at small angles #. This is achieved by expanding
both sides of Eq. (13) and using the small angle approxima-
tion for all 6 and @' terms. Note that in late-stage growth
only the first term in Eq. (12) needs to be considered.

e-{[nr(zxs)]/s}”[(t + AP0 0
=1- 2At7]f asin 00'd0’,

e—{[771“(2/5)]/5}5/20/7-)205 0

(2) 52
1" —
K 5 2tAt

&
— =1 — tArn tan az,

1-

5 7
2 5/4
ol
= \5 7
T=V8 —— (21)
5 Vtan «

Noting that the coefficient of Eq. (21) is approximately unity
gives

— (22)

Equation (22) was confirmed by comparing its predictions to
the crossover thicknesses observed in the analytic model for
many values of « and 7.

C. Effect of nonuniform initial angular distributions

We now analyze the effect that biasing the initial growth
direction toward or away from the fastest growth direction
has on the growth statistics. Figure 6 shows rms surface
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FIG. 6. (Color online) (a) rms surface roughness and (b) prob-
ability of grain survival calculated from the analytic growth model
for the three cases described in Fig. 1. Power laws are shown in
both graphs as dotted lines.

roughness and probability of grain survival versus film thick-
ness for the three cases described above. All three cases as-
ymptote toward the expected power laws as r— . However,
biasing the initial grain distribution toward the fastest growth
direction delays deletion of grains, leading to longer survival
times. In this case the surface is much smoother because the
mean peak to peak distances are dramatically reduced. Bias-
ing the growth direction away from the fastest growth direc-
tion has the opposite effect on both statistical measures.
These effects manifest in the thickness range from roughly
1 <h<<1000d.

Interestingly, the studies performed in [15,19] found
power law exponents for roughness and grain diameter in
excess of the predicted value of 0.4. This study suggests that
an initial nucleation of grains with texture biased away from
the fastest growth direction could be responsible for the ob-
served power law deviations. And indeed, an initial texture
bias toward (001) was observed in those studies compared to
a fastest grain growth direction near (111). To confirm our
explanation, careful measurements of the initial grain angu-
lar distributions will be required.

V. CONCLUSION

To summarize, we have derived an analytic model for
polycrystalline grain growth based on conic grain geom-
etries. This model showed excellent agreement compared to
level set simulations of conic surfaces and the results can be
computed in a much shorter time span. Three initial angular
grain density distributions were analyzed. When the distribu-
tion was biased toward the fastest growth direction, the prob-
ability of survival for each grain is increased and the surface
roughness is decreased compared to a uniform initial distri-
bution. When the distribution is biased away from the growth
direction, the opposite trends are observed. These results un-
derscore the importance of the initial grain distribution when
analyzing polycrystalline thin film growth. Finally, the cross-
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over thickness into late-stage growth is predicted with a
simple analytic expression.

ACKNOWLEDGMENTS

This study was funded by the Natural Sciences and Engi-
neering Research Council of Canada and Alberta Ingenuity.
The authors would also like to thank Brian C. Olsen for
technical help and Andrew J. Murray for his insight into the
mechanisms of grain deletion.

APPENDIX: INITIAL TEXTURE DISTRIBUTIONS

In this work the orientation distribution functions (ODFs)
g(0, @), were constructed using the following equation

2N+1

.
8(0.¢) = —5—— 2 wli; F(8.0)*",  (AD)
477( )

2 W, i=1
i=1

where 4; is a unit vector in the direction of the ith pole,
£(6, ¢) is the unit position vector in spherical coordinates, w;
is the relative weighting of the ith pole, P is the total number
of poles and N determines the degree of texturing. Note that
this expression assumes an equal weighting of each pole and
its antiparallel direction; therefore, there is no need to specify
both W; and —; for any given i. The (111)-oriented ODF is
constructed using all four (111) directions (d;) with equal
weighting (w;) and N=8. The (001) oriented ODF is con-
structed using all three (001) directions with equal weighting
and N=8. The uniform ODF is constructed using a single
pole with N=0.

The N parameter is used to control the sharpness of the
texture. When N=0, the distribution has random texture, as
N is increased the texture becomes progressively sharper.
The N parameter can be directly related to more commonly
used metrics to describe the degree of texture, such as the
texture index J,

o m=l

J=4m> > |0

1=0 m=-1

%, (A2)

where Q)" are the Fourier coefficients of the spherical har-
monic expansion of the ODF. For a uniform texture distribu-
tion J=1 and as the texture sharpens J takes on larger values.
Applying Parseval’s theorem, the texture factor can be ex-
pressed equivalently as

2T
J=4 f f g*(6, p)sin 6d6dp. (A3)
0 0

Using Egs. (Al) and (A3) an exact expression for the
texture index can be derived for an ODF consisting of (001)
poles, given by
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J=\|1+
AN + 1

As N is increased beyond unity the second term within the
brackets exponentially approaches zero, giving the following
relation

2T2(N + 1/2) ]
| 8,4 (1= 6) = ———"
E, ’{ i+ P aT 2N + 1/2)

(Zw)’

(Ad)
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2
i

J=(N+1) (AS5)

Moreover, it can be shown that Eq. (A5) is valid for any
number of poles pointing in arbitrary directions provided that
N is sufficiently large.
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